Curve name | $X_{191}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 7 \\ 2 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 0 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{64}$ | |||||||||
Curves that $X_{191}$ minimally covers | $X_{64}$ | |||||||||
Curves that minimally cover $X_{191}$ | $X_{443}$, $X_{445}$, $X_{447}$, $X_{461}$ | |||||||||
Curves that minimally cover $X_{191}$ and have infinitely many rational points. | ||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{191}) = \mathbb{Q}(f_{191}), f_{64} = \frac{\frac{1}{2}f_{191}^{2} + 4}{f_{191}^{2} + 8f_{191} + 8}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 + x^2 + 122x - 10940$, with conductor $294$ | |||||||||
Generic density of odd order reductions | $269/1344$ |