Curve name | $X_{64}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 7 \\ 2 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 0 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{23}$ | |||||||||
Curves that $X_{64}$ minimally covers | $X_{23}$, $X_{43}$, $X_{47}$ | |||||||||
Curves that minimally cover $X_{64}$ | $X_{191}$, $X_{196}$, $X_{255}$, $X_{257}$, $X_{263}$, $X_{278}$ | |||||||||
Curves that minimally cover $X_{64}$ and have infinitely many rational points. | $X_{191}$, $X_{196}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{64}) = \mathbb{Q}(f_{64}), f_{23} = \frac{f_{64}^{2} + \frac{1}{4}}{f_{64}}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 - 204083x + 35462018$, with conductor $424830$ | |||||||||
Generic density of odd order reductions | $271/1344$ |