Curve name | $X_{196}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 2 & 5 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{64}$ | |||||||||
Curves that $X_{196}$ minimally covers | $X_{64}$ | |||||||||
Curves that minimally cover $X_{196}$ | $X_{443}$, $X_{444}$, $X_{457}$, $X_{461}$ | |||||||||
Curves that minimally cover $X_{196}$ and have infinitely many rational points. | ||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{196}) = \mathbb{Q}(f_{196}), f_{64} = \frac{f_{196}^{2} + \frac{1}{2}f_{196} + \frac{1}{8}}{f_{196}}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 + x^2 - 6738x - 209880$, with conductor $294$ | |||||||||
Generic density of odd order reductions | $269/1344$ |