Curve name | $X_{203a}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 2 \\ 4 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 6 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 6 \\ 4 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{203}$ | |||||||||
Curves that $X_{203a}$ minimally covers | ||||||||||
Curves that minimally cover $X_{203a}$ | ||||||||||
Curves that minimally cover $X_{203a}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -1811939328t^{16} - 1811939328t^{14} - 7134511104t^{12} - 3369074688t^{10} - 738754560t^{8} - 52641792t^{6} - 1741824t^{4} - 6912t^{2} - 108\] \[B(t) = -29686813949952t^{24} - 44530220924928t^{22} + 214301688201216t^{20} + 232160162217984t^{18} + 164792258002944t^{16} + 56684709937152t^{14} + 9357307674624t^{12} + 885698592768t^{10} + 40232484864t^{8} + 885620736t^{6} + 12773376t^{4} - 41472t^{2} - 432\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 110977x + 14192255$, with conductor $3264$ | |||||||||
Generic density of odd order reductions | $271/2688$ |