Curve name | $X_{203}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 2 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 4 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{62}$ | |||||||||
Curves that $X_{203}$ minimally covers | $X_{62}$, $X_{99}$, $X_{101}$ | |||||||||
Curves that minimally cover $X_{203}$ | $X_{442}$, $X_{451}$, $X_{462}$, $X_{463}$, $X_{203a}$, $X_{203b}$, $X_{203c}$, $X_{203d}$, $X_{203e}$, $X_{203f}$, $X_{203g}$, $X_{203h}$ | |||||||||
Curves that minimally cover $X_{203}$ and have infinitely many rational points. | $X_{203a}$, $X_{203b}$, $X_{203c}$, $X_{203d}$, $X_{203e}$, $X_{203f}$, $X_{203g}$, $X_{203h}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{203}) = \mathbb{Q}(f_{203}), f_{62} = \frac{f_{203}}{f_{203}^{2} + \frac{1}{8}}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 15606x + 754272$, with conductor $306$ | |||||||||
Generic density of odd order reductions | $635/5376$ |