Curve name | $X_{203e}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 0 \\ 4 & 5 \end{matrix}\right], \left[ \begin{matrix} 5 & 2 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 4 & 5 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{203}$ | |||||||||
Curves that $X_{203e}$ minimally covers | ||||||||||
Curves that minimally cover $X_{203e}$ | ||||||||||
Curves that minimally cover $X_{203e}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -452984832t^{16} - 452984832t^{14} - 1783627776t^{12} - 842268672t^{10} - 184688640t^{8} - 13160448t^{6} - 435456t^{4} - 1728t^{2} - 27\] \[B(t) = -3710851743744t^{24} - 5566277615616t^{22} + 26787711025152t^{20} + 29020020277248t^{18} + 20599032250368t^{16} + 7085588742144t^{14} + 1169663459328t^{12} + 110712324096t^{10} + 5029060608t^{8} + 110702592t^{6} + 1596672t^{4} - 5184t^{2} - 54\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 27744x + 1787904$, with conductor $816$ | |||||||||
Generic density of odd order reductions | $215/2688$ |