Curve name | $X_{203f}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 2 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 4 & 5 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{203}$ | |||||||||
Curves that $X_{203f}$ minimally covers | ||||||||||
Curves that minimally cover $X_{203f}$ | ||||||||||
Curves that minimally cover $X_{203f}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -452984832t^{16} - 452984832t^{14} - 1783627776t^{12} - 842268672t^{10} - 184688640t^{8} - 13160448t^{6} - 435456t^{4} - 1728t^{2} - 27\] \[B(t) = 3710851743744t^{24} + 5566277615616t^{22} - 26787711025152t^{20} - 29020020277248t^{18} - 20599032250368t^{16} - 7085588742144t^{14} - 1169663459328t^{12} - 110712324096t^{10} - 5029060608t^{8} - 110702592t^{6} - 1596672t^{4} + 5184t^{2} + 54\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - 1734x - 27936$, with conductor $102$ | |||||||||
Generic density of odd order reductions | $53/896$ |