Curve name | $X_{20a}$ | |||||||||
Index | $16$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 3 & 0 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 3 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{20}$ | |||||||||
Curves that $X_{20a}$ minimally covers | ||||||||||
Curves that minimally cover $X_{20a}$ | ||||||||||
Curves that minimally cover $X_{20a}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{8} + 2592t^{7} - 16848t^{6} - 9504t^{5} + 240408t^{4} + 318816t^{3} - 422928t^{2} - 940896t - 431244\] \[B(t) = 432t^{12} - 15552t^{11} + 194400t^{10} - 782784t^{9} - 2010096t^{8} + 13779072t^{7} + 38574144t^{6} - 69579648t^{5} - 514588464t^{4} - 1123581888t^{3} - 1256096160t^{2} - 724489920t - 170772624\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 12x + 112$, with conductor $5184$ | |||||||||
Generic density of odd order reductions | $395/896$ |