Curve name | $X_{20}$ | ||||||
Index | $8$ | ||||||
Level | $4$ | ||||||
Genus | $0$ | ||||||
Does the subgroup contain $-I$? | Yes | ||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 3 & 0 \end{matrix}\right]$ | ||||||
Images in lower levels |
|
||||||
Meaning/Special name | Elliptic curves whose discriminant is minus a square with $a_{p}(E) \equiv 0 \pmod{4}$ for $p \equiv 3 \pmod{4}$ | ||||||
Chosen covering | $X_{7}$ | ||||||
Curves that $X_{20}$ minimally covers | $X_{3}$, $X_{7}$ | ||||||
Curves that minimally cover $X_{20}$ | $X_{60}$, $X_{180}$, $X_{20a}$, $X_{20b}$ | ||||||
Curves that minimally cover $X_{20}$ and have infinitely many rational points. | $X_{60}$, $X_{20a}$, $X_{20b}$ | ||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{20}) = \mathbb{Q}(f_{20}), f_{7} = \frac{f_{20} + 1}{f_{20}^{2} - 3}\] | ||||||
Info about rational points | None | ||||||
Comments on finding rational points | None | ||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 6x + 8$, with conductor $162$ | ||||||
Generic density of odd order reductions | $37/84$ |