Curve name | $X_{221c}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 0 \\ 12 & 3 \end{matrix}\right], \left[ \begin{matrix} 15 & 15 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 10 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{221}$ | ||||||||||||
Curves that $X_{221c}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{221c}$ | |||||||||||||
Curves that minimally cover $X_{221c}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{32} + 5184t^{24} + 179712t^{16} + 1327104t^{8} - 1769472\] \[B(t) = 54t^{48} + 31104t^{40} + 953856t^{32} - 244187136t^{16} - 2038431744t^{8} - 905969664\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 - x^2 - 199x - 68272$, with conductor $289$ | ||||||||||||
Generic density of odd order reductions | $13411/86016$ |