Curve name | $X_{221}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 15 & 14 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 12 & 3 \end{matrix}\right], \left[ \begin{matrix} 9 & 11 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{95}$ | ||||||||||||
Curves that $X_{221}$ minimally covers | $X_{95}$, $X_{105}$, $X_{106}$ | ||||||||||||
Curves that minimally cover $X_{221}$ | $X_{221a}$, $X_{221b}$, $X_{221c}$, $X_{221d}$ | ||||||||||||
Curves that minimally cover $X_{221}$ and have infinitely many rational points. | $X_{221a}$, $X_{221b}$, $X_{221c}$, $X_{221d}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{221}) = \mathbb{Q}(f_{221}), f_{95} = f_{221}^{2}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 6x + 377$, with conductor $153$ | ||||||||||||
Generic density of odd order reductions | $9249/57344$ |