Curve name | $X_{289}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $1$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 9 & 2 \\ 2 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 2 & 7 \end{matrix}\right], \left[ \begin{matrix} 9 & 9 \\ 2 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{91}$ | ||||||||||||
Curves that $X_{289}$ minimally covers | $X_{91}$, $X_{124}$, $X_{166}$ | ||||||||||||
Curves that minimally cover $X_{289}$ | $X_{582}$, $X_{585}$ | ||||||||||||
Curves that minimally cover $X_{289}$ and have infinitely many rational points. | |||||||||||||
Model | \[y^2 = x^3 + x^2 - 13x - 21\] | ||||||||||||
Info about rational points | $X_{289}(\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \times\mathbb{Z}$ | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 - x^2 + 173490x + 156628973$, with conductor $4046$ | ||||||||||||
Generic density of odd order reductions | $12833/57344$ |