Curve name | $X_{166}$ | ||||||||||||
Index | $24$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $1$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 15 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 13 & 13 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 15 & 13 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 11 & 11 \\ 2 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{39}$ | ||||||||||||
Curves that $X_{166}$ minimally covers | $X_{39}$ | ||||||||||||
Curves that minimally cover $X_{166}$ | $X_{281}$, $X_{289}$, $X_{302}$, $X_{304}$, $X_{366}$, $X_{374}$, $X_{379}$, $X_{389}$, $X_{395}$, $X_{402}$ | ||||||||||||
Curves that minimally cover $X_{166}$ and have infinitely many rational points. | $X_{281}$, $X_{289}$, $X_{302}$, $X_{304}$ | ||||||||||||
Model | \[y^2 = x^3 + x^2 - 3x + 1\] | ||||||||||||
Info about rational points | $X_{166}(\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \times\mathbb{Z}$ | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | None. All the rational points lift to covering modular curves. | ||||||||||||
Generic density of odd order reductions | N/A |