Curve name | $X_{32g}$ | ||||||||||||
Index | $24$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 6 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 9 \\ 12 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{32}$ | ||||||||||||
Curves that $X_{32g}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{32g}$ | |||||||||||||
Curves that minimally cover $X_{32g}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{6} - 1728t^{4} - 1728t^{2}\] \[B(t) = 432t^{9} + 10368t^{7} + 51840t^{5} - 27648t^{3}\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 354x - 2563$, with conductor $936$ | ||||||||||||
Generic density of odd order reductions | $13/84$ |