Curve name | $X_{32}$ | |||||||||
Index | $12$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 7 \\ 4 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{13}$ | |||||||||
Curves that $X_{32}$ minimally covers | $X_{13}$ | |||||||||
Curves that minimally cover $X_{32}$ | $X_{79}$, $X_{96}$, $X_{115}$, $X_{116}$, $X_{157}$, $X_{158}$, $X_{32a}$, $X_{32b}$, $X_{32c}$, $X_{32d}$, $X_{32e}$, $X_{32f}$, $X_{32g}$, $X_{32h}$, $X_{32i}$, $X_{32j}$, $X_{32k}$, $X_{32l}$ | |||||||||
Curves that minimally cover $X_{32}$ and have infinitely many rational points. | $X_{79}$, $X_{96}$, $X_{115}$, $X_{116}$, $X_{32a}$, $X_{32b}$, $X_{32c}$, $X_{32d}$, $X_{32e}$, $X_{32f}$, $X_{32g}$, $X_{32h}$, $X_{32i}$, $X_{32j}$, $X_{32k}$, $X_{32l}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{32}) = \mathbb{Q}(f_{32}), f_{13} = -f_{32}^{2} - 8\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 195x - 1000$, with conductor $1845$ | |||||||||
Generic density of odd order reductions | $9/56$ |