| Curve name | $X_{36}$ | 
| Index | $12$ | 
| Level | $8$ | 
| Genus | $0$ | 
| Does the subgroup contain $-I$? | Yes | 
| Generating matrices | $
\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | 
| Images in lower levels |  | 
| Meaning/Special name | $X_{0}(8)$ | 
| Chosen covering | $X_{13}$ | 
| Curves that $X_{36}$ minimally covers | $X_{13}$ | 
| Curves that minimally cover $X_{36}$ | $X_{75}$, $X_{78}$, $X_{84}$, $X_{85}$, $X_{86}$, $X_{92}$, $X_{96}$, $X_{102}$, $X_{117}$, $X_{118}$, $X_{119}$, $X_{120}$, $X_{121}$, $X_{122}$, $X_{159}$, $X_{168}$, $X_{36a}$, $X_{36b}$, $X_{36c}$, $X_{36d}$, $X_{36e}$, $X_{36f}$, $X_{36g}$, $X_{36h}$, $X_{36i}$, $X_{36j}$, $X_{36k}$, $X_{36l}$, $X_{36m}$, $X_{36n}$, $X_{36o}$, $X_{36p}$, $X_{36q}$, $X_{36r}$, $X_{36s}$, $X_{36t}$ | 
| Curves that minimally cover $X_{36}$ and have infinitely many rational 
points. | $X_{75}$, $X_{78}$, $X_{84}$, $X_{85}$, $X_{86}$, $X_{92}$, $X_{96}$, $X_{102}$, $X_{117}$, $X_{118}$, $X_{119}$, $X_{120}$, $X_{121}$, $X_{122}$, $X_{36a}$, $X_{36b}$, $X_{36c}$, $X_{36d}$, $X_{36e}$, $X_{36f}$, $X_{36g}$, $X_{36h}$, $X_{36i}$, $X_{36j}$, $X_{36k}$, $X_{36l}$, $X_{36m}$, $X_{36n}$, $X_{36o}$, $X_{36p}$, $X_{36q}$, $X_{36r}$, $X_{36s}$, $X_{36t}$ | 
| Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{36}) = \mathbb{Q}(f_{36}), f_{13} = 
-f_{36}^{2} + 8\] | 
| Info about rational points | None | 
| Comments on finding rational points | None | 
| Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 2385x - 44240$, with conductor $3465$ | 
| Generic density of odd order reductions | $5/42$ |