Curve name | $X_{96}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{25}$ | |||||||||
Curves that $X_{96}$ minimally covers | $X_{25}$, $X_{32}$, $X_{36}$ | |||||||||
Curves that minimally cover $X_{96}$ | $X_{184}$, $X_{185}$, $X_{192}$, $X_{193}$, $X_{194}$, $X_{206}$, $X_{208}$, $X_{215}$, $X_{246}$, $X_{249}$, $X_{313}$, $X_{314}$, $X_{315}$, $X_{316}$, $X_{386}$, $X_{404}$, $X_{96a}$, $X_{96b}$, $X_{96c}$, $X_{96d}$, $X_{96e}$, $X_{96f}$, $X_{96g}$, $X_{96h}$, $X_{96i}$, $X_{96j}$, $X_{96k}$, $X_{96l}$, $X_{96m}$, $X_{96n}$, $X_{96o}$, $X_{96p}$, $X_{96q}$, $X_{96r}$, $X_{96s}$, $X_{96t}$ | |||||||||
Curves that minimally cover $X_{96}$ and have infinitely many rational points. | $X_{185}$, $X_{192}$, $X_{193}$, $X_{194}$, $X_{208}$, $X_{215}$, $X_{96a}$, $X_{96b}$, $X_{96c}$, $X_{96d}$, $X_{96e}$, $X_{96f}$, $X_{96g}$, $X_{96h}$, $X_{96i}$, $X_{96j}$, $X_{96k}$, $X_{96l}$, $X_{96m}$, $X_{96n}$, $X_{96o}$, $X_{96p}$, $X_{96q}$, $X_{96r}$, $X_{96s}$, $X_{96t}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{96}) = \mathbb{Q}(f_{96}), f_{25} = -f_{96}^{2}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 40148415x - 97904904944$, with conductor $6435$ | |||||||||
Generic density of odd order reductions | $19/168$ |