Curve name | $X_{3a}$ | ||||||
Index | $4$ | ||||||
Level | $4$ | ||||||
Genus | $0$ | ||||||
Does the subgroup contain $-I$? | No | ||||||
Generating matrices | $ \left[ \begin{matrix} 2 & 3 \\ 3 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 3 & 3 \end{matrix}\right]$ | ||||||
Images in lower levels |
|
||||||
Meaning/Special name | |||||||
Chosen covering | $X_{3}$ | ||||||
Curves that $X_{3a}$ minimally covers | |||||||
Curves that minimally cover $X_{3a}$ | |||||||
Curves that minimally cover $X_{3a}$ and have infinitely many rational points. | |||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{6} + 559872t^{4} - 967458816t^{2} + 557256278016\] \[B(t) = 432t^{9} - 2985984t^{7} + 7739670528t^{5} - 8916100448256t^{3} + 3851755393646592t\] | ||||||
Info about rational points | |||||||
Comments on finding rational points | None | ||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 + 253x - 26862$, with conductor $1058$ | ||||||
Generic density of odd order reductions | $179/336$ |