Curve name | $X_{3}$ | ||||||
Index | $2$ | ||||||
Level | $4$ | ||||||
Genus | $0$ | ||||||
Does the subgroup contain $-I$? | Yes | ||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 0 & 1 \\ 3 & 1 \end{matrix}\right]$ | ||||||
Images in lower levels |
|
||||||
Meaning/Special name | Elliptic curves whose discriminant is minus a square | ||||||
Chosen covering | $X_{1}$ | ||||||
Curves that $X_{3}$ minimally covers | $X_{1}$ | ||||||
Curves that minimally cover $X_{3}$ | $X_{10}$, $X_{20}$, $X_{3a}$, $X_{3b}$ | ||||||
Curves that minimally cover $X_{3}$ and have infinitely many rational points. | $X_{10}$, $X_{20}$, $X_{3a}$, $X_{3b}$ | ||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{3}) = \mathbb{Q}(f_{3}), f_{1} = -f_{3}^{2} + 1728\] | ||||||
Info about rational points | None | ||||||
Comments on finding rational points | None | ||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 + x^2 - 30x - 76$, with conductor $121$ | ||||||
Generic density of odd order reductions | $59/112$ |