Curve name | $X_{3b}$ | |||||||||
Index | $4$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 0 & 1 \\ 3 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 3 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{3}$ | |||||||||
Curves that $X_{3b}$ minimally covers | ||||||||||
Curves that minimally cover $X_{3b}$ | ||||||||||
Curves that minimally cover $X_{3b}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{6} + 139968t^{4} - 241864704t^{2} + 139314069504\] \[B(t) = 54t^{9} - 373248t^{7} + 967458816t^{5} - 1114512556032t^{3} + 481469424205824t\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 + x^2 - 2x - 7$, with conductor $121$ | |||||||||
Generic density of odd order reductions | $5665/10752$ |