Curve name | $X_{40}$ | |||||||||
Index | $12$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 6 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{12}$ | |||||||||
Curves that $X_{40}$ minimally covers | $X_{12}$, $X_{16}$, $X_{17}$ | |||||||||
Curves that minimally cover $X_{40}$ | $X_{126}$, $X_{145}$, $X_{40a}$, $X_{40b}$, $X_{40c}$, $X_{40d}$ | |||||||||
Curves that minimally cover $X_{40}$ and have infinitely many rational points. | $X_{40a}$, $X_{40b}$, $X_{40c}$, $X_{40d}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{40}) = \mathbb{Q}(f_{40}), f_{12} = \frac{8f_{40}^{2} - 1}{f_{40}^{2} + f_{40} + \frac{1}{8}}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 318x + 1640$, with conductor $16128$ | |||||||||
Generic density of odd order reductions | $3331/10752$ |