Curve name | $X_{40a}$ | ||||||||||||
Index | $24$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 6 & 11 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 14 & 15 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 2 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{40}$ | ||||||||||||
Curves that $X_{40a}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{40a}$ | |||||||||||||
Curves that minimally cover $X_{40a}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -17280t^{4} - 6912t^{3} - 864t^{2} - 864t - 270\] \[B(t) = -774144t^{6} - 165888t^{5} + 373248t^{4} + 235008t^{3} + 46656t^{2} - 2592t - 1512\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 525x - 4459$, with conductor $1792$ | ||||||||||||
Generic density of odd order reductions | $106595/344064$ |