Curve name | $X_{525}$ | |||||||||||||||
Index | $96$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $2$ | |||||||||||||||
Does the subgroup contain $-I$? | Yes | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 19 & 19 \\ 2 & 1 \end{matrix}\right], \left[ \begin{matrix} 15 & 0 \\ 2 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 1 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{224}$ | |||||||||||||||
Curves that $X_{525}$ minimally covers | $X_{224}$ | |||||||||||||||
Curves that minimally cover $X_{525}$ | ||||||||||||||||
Curves that minimally cover $X_{525}$ and have infinitely many rational points. | ||||||||||||||||
Model | \[y^2 = -x^6 + 8x^5 - 6x^4 - 12x^2 - 32x - 8\] | |||||||||||||||
Info about rational points | No non-singular rational points | |||||||||||||||
Comments on finding rational points | The rank of the Jacobian is 0. We use the method of Chabauty. | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | None | |||||||||||||||
Generic density of odd order reductions | N/A |