Curve name | $X_{224}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 15 & 0 \\ 2 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 2 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{80}$ | ||||||||||||
Curves that $X_{224}$ minimally covers | $X_{80}$, $X_{105}$, $X_{107}$ | ||||||||||||
Curves that minimally cover $X_{224}$ | $X_{525}$, $X_{526}$ | ||||||||||||
Curves that minimally cover $X_{224}$ and have infinitely many rational points. | |||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{224}) = \mathbb{Q}(f_{224}), f_{80} = \frac{f_{224}^{2} - \frac{1}{32}}{f_{224}}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 17303x + 881475$, with conductor $13056$ | ||||||||||||
Generic density of odd order reductions | $12833/57344$ |