Curve name | $X_{55}$ | |||||||||
Index | $16$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 5 \\ 7 & 2 \end{matrix}\right], \left[ \begin{matrix} 6 & 7 \\ 5 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 2 \\ 7 & 5 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | $X_{ns}^{+}(8)$ | |||||||||
Chosen covering | $X_{7}$ | |||||||||
Curves that $X_{55}$ minimally covers | $X_{7}$ | |||||||||
Curves that minimally cover $X_{55}$ | $X_{179}$, $X_{180}$, $X_{253}$, $X_{441}$ | |||||||||
Curves that minimally cover $X_{55}$ and have infinitely many rational points. | ||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{55}) = \mathbb{Q}(f_{55}), f_{7} = \frac{\frac{1}{8}f_{55}^{4} - \frac{1}{8}f_{55}^{2} + \frac{1}{32}}{f_{55}^{4} - f_{55}^{2} + f_{55} - \frac{1}{4}}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 + 1995x + 58727$, with conductor $3388$ | |||||||||
Generic density of odd order reductions | $2867/5376$ |