Curve name | $X_{7}$ | ||||||
Index | $4$ | ||||||
Level | $4$ | ||||||
Genus | $0$ | ||||||
Does the subgroup contain $-I$? | Yes | ||||||
Generating matrices | $ \left[ \begin{matrix} 2 & 1 \\ 3 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 1 \\ 2 & 1 \end{matrix}\right]$ | ||||||
Images in lower levels |
|
||||||
Meaning/Special name | Elliptic curves with $a_{p}(E) \equiv 0 \pmod{4}$ if $p$ is inert in $\mathbb{Q}(\sqrt{\Delta})$ | ||||||
Chosen covering | $X_{1}$ | ||||||
Curves that $X_{7}$ minimally covers | $X_{1}$ | ||||||
Curves that minimally cover $X_{7}$ | $X_{20}$, $X_{21}$, $X_{22}$, $X_{26}$, $X_{55}$ | ||||||
Curves that minimally cover $X_{7}$ and have infinitely many rational points. | $X_{20}$, $X_{22}$, $X_{26}$, $X_{55}$ | ||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{7}) = \mathbb{Q}(f_{7}), f_{1} = \frac{32f_{7} - 4}{f_{7}^{4}}\] | ||||||
Info about rational points | None | ||||||
Comments on finding rational points | None | ||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 12x + 20$, with conductor $216$ | ||||||
Generic density of odd order reductions | $179/336$ |