The modular curve $X_{558}$

Curve name $X_{558}$
Index $96$
Level $16$
Genus $3$
Does the subgroup contain $-I$? Yes
Generating matrices $ \left[ \begin{matrix} 3 & 5 \\ 6 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 5 \\ 14 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 7 \\ 2 & 1 \end{matrix}\right]$
Images in lower levels
LevelIndex of imageCorresponding curve
$2$ $3$ $X_{6}$
$4$ $6$ $X_{12}$
$8$ $24$ $X_{89}$
Meaning/Special name
Chosen covering $X_{297}$
Curves that $X_{558}$ minimally covers $X_{297}$
Curves that minimally cover $X_{558}$
Curves that minimally cover $X_{558}$ and have infinitely many rational points.
Model \[y^2 = x^8 - 4x^7 - 12x^6 + 28x^5 + 38x^4 - 28x^3 - 12x^2 + 4x + 1\]
Info about rational points
Rational pointImage on the $j$-line
$(1 : -1 : 0)$ \[ \infty \]
$(1 : 1 : 0)$ \[\frac{68769820673}{16}\]
$(-1 : -4 : 1)$ \[ \infty \]
$(-1 : 4 : 1)$ \[\frac{68769820673}{16}\]
$(0 : -1 : 1)$ \[ \infty \]
$(0 : 1 : 1)$ \[\frac{68769820673}{16}\]
$(1 : -4 : 1)$ \[ \infty \]
$(1 : 4 : 1)$ \[\frac{68769820673}{16}\]
Comments on finding rational points A family of etale double covers maps to genus 2 hyperelliptic curves whose Jacobians have rank zero or one.
Elliptic curve whose $2$-adic image is the subgroup $y^2 + xy = x^3 + x^2 - 5882694x - 5494222780$, with conductor $3362$
Generic density of odd order reductions $6515/21504$

Back to the 2-adic image homepage.