Curve name | $X_{61e}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 6 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 6 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 6 \\ 10 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 12 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{61}$ | ||||||||||||
Curves that $X_{61e}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{61e}$ | |||||||||||||
Curves that minimally cover $X_{61e}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{18} - 324t^{14} - 432t^{10} - 324t^{6} - 108t^{2}\] \[B(t) = 432t^{27} + 1944t^{23} + 2592t^{19} - 2592t^{11} - 1944t^{7} - 432t^{3}\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 14312853x - 18640762520$, with conductor $84681$ | ||||||||||||
Generic density of odd order reductions | $9249/57344$ |