Curve name | $X_{61}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 6 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 6 \\ 2 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{24}$ | |||||||||
Curves that $X_{61}$ minimally covers | $X_{24}$, $X_{35}$, $X_{45}$ | |||||||||
Curves that minimally cover $X_{61}$ | $X_{209}$, $X_{210}$, $X_{251}$, $X_{254}$, $X_{392}$, $X_{393}$, $X_{61a}$, $X_{61b}$, $X_{61c}$, $X_{61d}$, $X_{61e}$, $X_{61f}$, $X_{61g}$, $X_{61h}$ | |||||||||
Curves that minimally cover $X_{61}$ and have infinitely many rational points. | $X_{209}$, $X_{210}$, $X_{61a}$, $X_{61b}$, $X_{61c}$, $X_{61d}$, $X_{61e}$, $X_{61f}$, $X_{61g}$, $X_{61h}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{61}) = \mathbb{Q}(f_{61}), f_{24} = f_{61}^{2}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 - 4226x + 94223$, with conductor $7275$ | |||||||||
Generic density of odd order reductions | $289/1792$ |