Curve name | $X_{62c}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 2 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{62}$ | |||||||||
Curves that $X_{62c}$ minimally covers | ||||||||||
Curves that minimally cover $X_{62c}$ | ||||||||||
Curves that minimally cover $X_{62c}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{12} - 108t^{10} - 1620t^{8} - 6048t^{6} - 6480t^{4} - 1728t^{2} - 1728\] \[B(t) = -54t^{18} - 324t^{16} + 6480t^{14} + 42336t^{12} + 114048t^{10} + 228096t^{8} + 338688t^{6} + 207360t^{4} - 41472t^{2} - 27648\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 1276923x - 384496378$, with conductor $8280$ | |||||||||
Generic density of odd order reductions | $635/5376$ |