Curve name | $X_{62}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 6 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 4 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{25}$ | |||||||||
Curves that $X_{62}$ minimally covers | $X_{25}$, $X_{38}$, $X_{46}$ | |||||||||
Curves that minimally cover $X_{62}$ | $X_{198}$, $X_{200}$, $X_{203}$, $X_{204}$, $X_{246}$, $X_{247}$, $X_{62a}$, $X_{62b}$, $X_{62c}$, $X_{62d}$, $X_{62e}$, $X_{62f}$, $X_{62g}$, $X_{62h}$, $X_{62i}$, $X_{62j}$ | |||||||||
Curves that minimally cover $X_{62}$ and have infinitely many rational points. | $X_{200}$, $X_{203}$, $X_{204}$, $X_{62a}$, $X_{62b}$, $X_{62c}$, $X_{62d}$, $X_{62e}$, $X_{62f}$, $X_{62g}$, $X_{62h}$, $X_{62i}$, $X_{62j}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{62}) = \mathbb{Q}(f_{62}), f_{25} = \frac{f_{62}^{2} + 2}{f_{62}^{2} - 2}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 33339x + 754630$, with conductor $5544$ | |||||||||
Generic density of odd order reductions | $643/5376$ |