Curve name | $X_{62g}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 6 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 4 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 0 & 5 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{62}$ | |||||||||
Curves that $X_{62g}$ minimally covers | ||||||||||
Curves that minimally cover $X_{62g}$ | ||||||||||
Curves that minimally cover $X_{62g}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{16} - 1296t^{12} + 11232t^{8} - 20736t^{4} - 6912\] \[B(t) = 54t^{24} - 7776t^{20} + 59616t^{16} - 953856t^{8} + 1990656t^{4} - 221184\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 21962992x - 12752438180$, with conductor $142296$ | |||||||||
Generic density of odd order reductions | $307/2688$ |