Curve name | $X_{66c}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 6 \\ 6 & 11 \end{matrix}\right], \left[ \begin{matrix} 3 & 6 \\ 10 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 2 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{66}$ | ||||||||||||
Curves that $X_{66c}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{66c}$ | |||||||||||||
Curves that minimally cover $X_{66c}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -81t^{12} - 1944t^{11} - 25056t^{10} - 216000t^{9} - 1321920t^{8} - 5889024t^{7} - 19353600t^{6} - 47112192t^{5} - 84602880t^{4} - 110592000t^{3} - 102629376t^{2} - 63700992t - 21233664\] \[B(t) = 3888t^{17} + 132192t^{16} + 2180736t^{15} + 23120640t^{14} + 176504832t^{13} + 1031546880t^{12} + 4790181888t^{11} + 18087100416t^{10} + 56251514880t^{9} + 144696803328t^{8} + 306571640832t^{7} + 528152002560t^{6} + 722963791872t^{5} + 757617131520t^{4} + 571666857984t^{3} + 277226717184t^{2} + 65229815808t\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 20425x - 1122000$, with conductor $5600$ | ||||||||||||
Generic density of odd order reductions | $9249/57344$ |