Curve name | $X_{66}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 4 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 6 \\ 6 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{24}$ | |||||||||
Curves that $X_{66}$ minimally covers | $X_{24}$, $X_{38}$, $X_{39}$ | |||||||||
Curves that minimally cover $X_{66}$ | $X_{214}$, $X_{254}$, $X_{256}$, $X_{395}$, $X_{398}$, $X_{66a}$, $X_{66b}$, $X_{66c}$, $X_{66d}$, $X_{66e}$, $X_{66f}$ | |||||||||
Curves that minimally cover $X_{66}$ and have infinitely many rational points. | $X_{214}$, $X_{66a}$, $X_{66b}$, $X_{66c}$, $X_{66d}$, $X_{66e}$, $X_{66f}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{66}) = \mathbb{Q}(f_{66}), f_{24} = \frac{f_{66}^{2} - 8}{f_{66}^{2} + 8f_{66} + 8}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 7353x - 242352$, with conductor $10080$ | |||||||||
Generic density of odd order reductions | $289/1792$ |