Curve name | $X_{66d}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 6 \\ 2 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 2 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{66}$ | |||||||||
Curves that $X_{66d}$ minimally covers | ||||||||||
Curves that minimally cover $X_{66d}$ | ||||||||||
Curves that minimally cover $X_{66d}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -324t^{8} - 5184t^{7} - 48384t^{6} - 290304t^{5} - 1064448t^{4} - 2322432t^{3} - 3096576t^{2} - 2654208t - 1327104\] \[B(t) = 31104t^{11} + 684288t^{10} + 6994944t^{9} + 43794432t^{8} + 189775872t^{7} + 613122048t^{6} + 1518206976t^{5} + 2802843648t^{4} + 3581411328t^{3} + 2802843648t^{2} + 1019215872t\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 3268x + 71808$, with conductor $2240$ | |||||||||
Generic density of odd order reductions | $419/2688$ |