Curve name | $X_{66e}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 6 \\ 6 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{66}$ | |||||||||
Curves that $X_{66e}$ minimally covers | ||||||||||
Curves that minimally cover $X_{66e}$ | ||||||||||
Curves that minimally cover $X_{66e}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -81t^{8} - 1296t^{7} - 12096t^{6} - 72576t^{5} - 266112t^{4} - 580608t^{3} - 774144t^{2} - 663552t - 331776\] \[B(t) = 3888t^{11} + 85536t^{10} + 874368t^{9} + 5474304t^{8} + 23721984t^{7} + 76640256t^{6} + 189775872t^{5} + 350355456t^{4} + 447676416t^{3} + 350355456t^{2} + 127401984t\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 817x + 8976$, with conductor $1120$ | |||||||||
Generic density of odd order reductions | $307/2688$ |