Curve name | $X_{66f}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 4 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 6 \\ 6 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{66}$ | |||||||||
Curves that $X_{66f}$ minimally covers | ||||||||||
Curves that minimally cover $X_{66f}$ | ||||||||||
Curves that minimally cover $X_{66f}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -324t^{16} - 10368t^{15} - 152064t^{14} - 1354752t^{13} - 7769088t^{12} - 25436160t^{11} - 11501568t^{10} + 295501824t^{9} + 1336836096t^{8} + 2364014592t^{7} - 736100352t^{6} - 13023313920t^{5} - 31822184448t^{4} - 44392513536t^{3} - 39862665216t^{2} - 21743271936t - 5435817984\] \[B(t) = 31104t^{23} + 1430784t^{22} + 29389824t^{21} + 353009664t^{20} + 2701320192t^{19} + 13103382528t^{18} + 33342160896t^{17} - 28877783040t^{16} - 642983657472t^{15} - 2806071164928t^{14} - 6014053122048t^{13} + 48112424976384t^{11} + 179588554555392t^{10} + 329207632625664t^{9} + 118283399331840t^{8} - 1092555928240128t^{7} - 3434973109420032t^{6} - 5665079043293184t^{5} - 5922519383015424t^{4} - 3944635403599872t^{3} - 1536292621910016t^{2} - 267181325549568t\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 160132x + 24630144$, with conductor $15680$ | |||||||||
Generic density of odd order reductions | $419/2688$ |