Curve name | $X_{67}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 4 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 6 \\ 6 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{24}$ | |||||||||
Curves that $X_{67}$ minimally covers | $X_{24}$, $X_{28}$, $X_{43}$ | |||||||||
Curves that minimally cover $X_{67}$ | $X_{255}$, $X_{256}$, $X_{67a}$, $X_{67b}$, $X_{67c}$, $X_{67d}$ | |||||||||
Curves that minimally cover $X_{67}$ and have infinitely many rational points. | $X_{67a}$, $X_{67b}$, $X_{67c}$, $X_{67d}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{67}) = \mathbb{Q}(f_{67}), f_{24} = \frac{-2}{f_{67}^{2}}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 63x + 162$, with conductor $360$ | |||||||||
Generic density of odd order reductions | $13/84$ |