Curve name | $X_{28}$ | |||||||||
Index | $12$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 4 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 6 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{11}$ | |||||||||
Curves that $X_{28}$ minimally covers | $X_{11}$ | |||||||||
Curves that minimally cover $X_{28}$ | $X_{67}$, $X_{68}$, $X_{81}$, $X_{90}$, $X_{128}$, $X_{146}$ | |||||||||
Curves that minimally cover $X_{28}$ and have infinitely many rational points. | $X_{67}$, $X_{68}$, $X_{81}$, $X_{90}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{28}) = \mathbb{Q}(f_{28}), f_{11} = -2f_{28}^{2} - 8\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 2703x - 54090$, with conductor $468$ | |||||||||
Generic density of odd order reductions | $89/336$ |