Curve name | $X_{76d}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 6 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{76}$ | |||||||||
Curves that $X_{76d}$ minimally covers | ||||||||||
Curves that minimally cover $X_{76d}$ | ||||||||||
Curves that minimally cover $X_{76d}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -270t^{12} + 3888t^{11} + 52272t^{10} + 129600t^{9} - 64800t^{8} - 870912t^{7} - 2225664t^{6} + 3483648t^{5} - 1036800t^{4} - 8294400t^{3} + 13381632t^{2} - 3981312t - 1105920\] \[B(t) = 7344t^{18} + 93312t^{17} + 554688t^{16} + 1244160t^{15} - 12856320t^{14} - 90574848t^{13} - 98316288t^{12} + 258785280t^{11} + 80289792t^{10} + 321159168t^{8} - 4140564480t^{7} - 6292242432t^{6} + 23187161088t^{5} - 13164871680t^{4} - 5096079360t^{3} + 9088008192t^{2} - 6115295232t + 1925185536\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 13x - 85$, with conductor $768$ | |||||||||
Generic density of odd order reductions | $1139/5376$ |