Curve name | $X_{76}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 2 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 6 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 6 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{23}$ | |||||||||
Curves that $X_{76}$ minimally covers | $X_{23}$, $X_{29}$, $X_{49}$ | |||||||||
Curves that minimally cover $X_{76}$ | $X_{257}$, $X_{258}$, $X_{76a}$, $X_{76b}$, $X_{76c}$, $X_{76d}$ | |||||||||
Curves that minimally cover $X_{76}$ and have infinitely many rational points. | $X_{76a}$, $X_{76b}$, $X_{76c}$, $X_{76d}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{76}) = \mathbb{Q}(f_{76}), f_{23} = \frac{2f_{76}^{2} + 8}{f_{76}^{2} + 4f_{76} - 4}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 333x - 9963$, with conductor $19200$ | |||||||||
Generic density of odd order reductions | $401/1792$ |