Curve name | $X_{82d}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 15 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 10 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 14 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{82}$ | ||||||||||||
Curves that $X_{82d}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{82d}$ | |||||||||||||
Curves that minimally cover $X_{82d}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -17010t^{20} - 312336t^{19} - 2677320t^{18} - 14580000t^{17} - 57887784t^{16} - 181336320t^{15} - 470240640t^{14} - 1039993344t^{13} - 1999702080t^{12} - 3384737280t^{11} - 5078502144t^{10} - 6769474560t^{9} - 7998808320t^{8} - 8319946752t^{7} - 7523850240t^{6} - 5802762240t^{5} - 3704818176t^{4} - 1866240000t^{3} - 685393920t^{2} - 159916032t - 17418240\] \[B(t) = -851472t^{30} - 23397984t^{29} - 306708768t^{28} - 2575694592t^{27} - 15696244800t^{26} - 74432151936t^{25} - 286950169728t^{24} - 925319614464t^{23} - 2541686936832t^{22} - 6010028969472t^{21} - 12279188224512t^{20} - 21583379460096t^{19} - 32068140143616t^{18} - 38352876779520t^{17} - 31244579629056t^{16} + 62489159258112t^{14} + 153411507118080t^{13} + 256545121148928t^{12} + 345334071361536t^{11} + 392934023184384t^{10} + 384641854046208t^{9} + 325335927914496t^{8} + 236881821302784t^{7} + 146918486900736t^{6} + 76218523582464t^{5} + 32145909350400t^{4} + 10550045048832t^{3} + 2512558227456t^{2} + 383352569856t + 27901034496\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 210x - 1168$, with conductor $2304$ | ||||||||||||
Generic density of odd order reductions | $403/1792$ |