Curve name | $X_{82}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 6 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 0 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{35}$ | |||||||||
Curves that $X_{82}$ minimally covers | $X_{35}$, $X_{41}$, $X_{43}$ | |||||||||
Curves that minimally cover $X_{82}$ | $X_{261}$, $X_{263}$, $X_{82a}$, $X_{82b}$, $X_{82c}$, $X_{82d}$ | |||||||||
Curves that minimally cover $X_{82}$ and have infinitely many rational points. | $X_{82a}$, $X_{82b}$, $X_{82c}$, $X_{82d}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{82}) = \mathbb{Q}(f_{82}), f_{35} = \frac{4f_{82}^{2} - 8}{f_{82}^{2} + 4f_{82} + 2}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 583x - 5213$, with conductor $19200$ | |||||||||
Generic density of odd order reductions | $401/1792$ |