Curve name | $X_{94c}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 0 \\ 12 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 12 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 5 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{94}$ | ||||||||||||
Curves that $X_{94c}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{94c}$ | |||||||||||||
Curves that minimally cover $X_{94c}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = 81t^{12} + 1944t^{11} + 16416t^{10} + 43200t^{9} - 233280t^{8} - 2405376t^{7} - 9400320t^{6} - 19243008t^{5} - 14929920t^{4} + 22118400t^{3} + 67239936t^{2} + 63700992t + 21233664\] \[B(t) = 3888t^{17} + 132192t^{16} + 1987200t^{15} + 17314560t^{14} + 95219712t^{13} + 327075840t^{12} + 572645376t^{11} - 306561024t^{10} - 3698196480t^{9} - 2452488192t^{8} + 36649304064t^{7} + 167462830080t^{6} + 390019940352t^{5} + 567363502080t^{4} + 520932556800t^{3} + 277226717184t^{2} + 65229815808t\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 14300x - 1808000$, with conductor $5600$ | ||||||||||||
Generic density of odd order reductions | $9249/57344$ |