| Curve name | 
$X_{94}$ | 
| Index | 
$24$ | 
| Level | 
$8$ | 
| Genus | 
$0$ | 
| Does the subgroup contain $-I$? | 
Yes | 
| Generating matrices | 
$
\left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right],
\left[ \begin{matrix} 7 & 0 \\ 4 & 3 \end{matrix}\right],
\left[ \begin{matrix} 5 & 5 \\ 4 & 3 \end{matrix}\right]$ | 
| Images in lower levels | 
 | 
| Meaning/Special name | 
 | 
| Chosen covering | 
$X_{27}$ | 
| Curves that $X_{94}$ minimally covers  | 
$X_{27}$, $X_{34}$, $X_{45}$ | 
| Curves that minimally cover $X_{94}$ | 
$X_{231}$, $X_{260}$, $X_{277}$, $X_{376}$, $X_{378}$, $X_{94a}$, $X_{94b}$, $X_{94c}$, $X_{94d}$, $X_{94e}$, $X_{94f}$ | 
| Curves that minimally cover $X_{94}$ and have infinitely many rational 
points. | 
$X_{231}$, $X_{94a}$, $X_{94b}$, $X_{94c}$, $X_{94d}$, $X_{94e}$, $X_{94f}$ | 
| Model | 
\[\mathbb{P}^{1}, \mathbb{Q}(X_{94}) = \mathbb{Q}(f_{94}), f_{27} = 
\frac{\frac{1}{2}f_{94}^{2} - 4}{f_{94}^{2} + 8f_{94} + 8}\] | 
| Info about rational points | 
None | 
| Comments on finding rational points | 
None | 
| Elliptic curve whose $2$-adic image is the subgroup | 
$y^2 = x^3 - 5148x - 390528$, with conductor $10080$ | 
| Generic density of odd order reductions | 
$289/1792$ |