Curve name | $X_{94}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 4 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 4 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{27}$ | |||||||||
Curves that $X_{94}$ minimally covers | $X_{27}$, $X_{34}$, $X_{45}$ | |||||||||
Curves that minimally cover $X_{94}$ | $X_{231}$, $X_{260}$, $X_{277}$, $X_{376}$, $X_{378}$, $X_{94a}$, $X_{94b}$, $X_{94c}$, $X_{94d}$, $X_{94e}$, $X_{94f}$ | |||||||||
Curves that minimally cover $X_{94}$ and have infinitely many rational points. | $X_{231}$, $X_{94a}$, $X_{94b}$, $X_{94c}$, $X_{94d}$, $X_{94e}$, $X_{94f}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{94}) = \mathbb{Q}(f_{94}), f_{27} = \frac{\frac{1}{2}f_{94}^{2} - 4}{f_{94}^{2} + 8f_{94} + 8}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 5148x - 390528$, with conductor $10080$ | |||||||||
Generic density of odd order reductions | $289/1792$ |