Curve name | $X_{94d}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 0 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 4 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{94}$ | |||||||||
Curves that $X_{94d}$ minimally covers | ||||||||||
Curves that minimally cover $X_{94d}$ | ||||||||||
Curves that minimally cover $X_{94d}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = 324t^{8} + 5184t^{7} + 13824t^{6} - 124416t^{5} - 732672t^{4} - 995328t^{3} + 884736t^{2} + 2654208t + 1327104\] \[B(t) = 31104t^{11} + 684288t^{10} + 5446656t^{9} + 15925248t^{8} - 14598144t^{7} - 167215104t^{6} - 116785152t^{5} + 1019215872t^{4} + 2788687872t^{3} + 2802843648t^{2} + 1019215872t\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 572x + 14464$, with conductor $1120$ | |||||||||
Generic density of odd order reductions | $307/2688$ |