Curve name | $X_{94f}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 4 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{94}$ | |||||||||
Curves that $X_{94f}$ minimally covers | ||||||||||
Curves that minimally cover $X_{94f}$ | ||||||||||
Curves that minimally cover $X_{94f}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = 81t^{8} + 1296t^{7} + 3456t^{6} - 31104t^{5} - 183168t^{4} - 248832t^{3} + 221184t^{2} + 663552t + 331776\] \[B(t) = 3888t^{11} + 85536t^{10} + 680832t^{9} + 1990656t^{8} - 1824768t^{7} - 20901888t^{6} - 14598144t^{5} + 127401984t^{4} + 348585984t^{3} + 350355456t^{2} + 127401984t\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 143x + 1808$, with conductor $2240$ | |||||||||
Generic density of odd order reductions | $419/2688$ |