Curve name | $X_{96b}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 14 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 10 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 0 & 5 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{96}$ | ||||||||||||
Curves that $X_{96b}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{96b}$ | |||||||||||||
Curves that minimally cover $X_{96b}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{14} + 54t^{12} - 54t^{8} + 54t^{4} - 27t^{2}\] \[B(t) = 54t^{21} - 162t^{19} + 81t^{17} + 189t^{15} - 324t^{13} + 324t^{11} - 189t^{9} - 81t^{7} + 162t^{5} - 54t^{3}\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 1656300x + 693938000$, with conductor $187200$ | ||||||||||||
Generic density of odd order reductions | $25/224$ |