The modular curve $X_{96b}$

Curve name $X_{96b}$
Index $48$
Level $16$
Genus $0$
Does the subgroup contain $-I$? No
Generating matrices $ \left[ \begin{matrix} 1 & 2 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 14 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 10 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 0 & 5 \end{matrix}\right]$
Images in lower levels
LevelIndex of imageCorresponding curve
$2$ $6$ $X_{8}$
$4$ $12$ $X_{25}$
$8$ $24$ $X_{96}$
Meaning/Special name
Chosen covering $X_{96}$
Curves that $X_{96b}$ minimally covers
Curves that minimally cover $X_{96b}$
Curves that minimally cover $X_{96b}$ and have infinitely many rational points.
Model $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{14} + 54t^{12} - 54t^{8} + 54t^{4} - 27t^{2}\] \[B(t) = 54t^{21} - 162t^{19} + 81t^{17} + 189t^{15} - 324t^{13} + 324t^{11} - 189t^{9} - 81t^{7} + 162t^{5} - 54t^{3}\]
Info about rational points
Comments on finding rational points None
Elliptic curve whose $2$-adic image is the subgroup $y^2 = x^3 - 1656300x + 693938000$, with conductor $187200$
Generic density of odd order reductions $25/224$

Back to the 2-adic image homepage.