Curve name | $X_{96d}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 14 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 10 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{96}$ | ||||||||||||
Curves that $X_{96d}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{96d}$ | |||||||||||||
Curves that minimally cover $X_{96d}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{18} + 81t^{14} - 108t^{10} + 81t^{6} - 27t^{2}\] \[B(t) = 54t^{27} - 243t^{23} + 324t^{19} - 324t^{11} + 243t^{7} - 54t^{3}\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 308953917x + 2090263140616$, with conductor $38025$ | ||||||||||||
Generic density of odd order reductions | $307/2688$ |