Curve name | $X_{96p}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{96}$ | ||||||||||||
Curves that $X_{96p}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{96p}$ | |||||||||||||
Curves that minimally cover $X_{96p}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{14} - 216t^{12} + 216t^{8} - 216t^{4} - 108t^{2}\] \[B(t) = 432t^{21} + 1296t^{19} + 648t^{17} - 1512t^{15} - 2592t^{13} - 2592t^{11} - 1512t^{9} + 648t^{7} + 1296t^{5} + 432t^{3}\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 - x^2 - 174947x - 23777854$, with conductor $7605$ | ||||||||||||
Generic density of odd order reductions | $25/224$ |